Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432915

RESUMO

Plastic waste pollution, including non-biodegradable landfills, leaching of toxic chemicals into soil and waterways, and emission of toxic gases into the atmosphere, is significantly affecting our environment. Conventional plastic waste recycling approaches generally produce lower value materials compared to the original plastic or recover inefficient heat energy. Lately, upcycling or the valorization approach has emerged as a sustainable solution to transform plastic waste into value-added products. In this review, we present an overview of recent advancements in plastic waste upcycling, such as vitrimerization, nanocomposite fabrication, additive manufacturing, catalytic transformation, and industrial biotechnology, envisaged with technical challenges, future developments, and new circular economy opportunities.

2.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297394

RESUMO

Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.

3.
J Agric Food Chem ; 69(17): 4946-4959, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890783

RESUMO

The current perspective presents an outlook on developing gut-like bioreactors with immobilized probiotic bacteria using cellulose hydrogels. The innovative concept of using hydrogels to simulate the human gut environment by generating and maintaining pH and oxygen gradients in the gut-like bioreactors is discussed. Fundamentally, this approach presents novel methods of production as well as delivery of multiple strains of probiotics using bioreactors. The relevant existing synthesis methods of cellulose hydrogels are discussed for producing porous hydrogels. Harvesting methods of multiple strains are discussed in the context of encapsulation of probiotic bacteria immobilized on cellulose hydrogels. Furthermore, we also discuss recent advances in using cellulose hydrogels for encapsulation of probiotic bacteria. This perspective also highlights the mechanism of probiotic protection by cellulose hydrogels. Such novel gut-like hydrogel bioreactors will have the potential to simulate the human gut ecosystem in the laboratory and stimulate new research on gut microbiota.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bactérias , Reatores Biológicos , Celulose , Ecossistema , Humanos , Hidrogéis
4.
Polymers (Basel) ; 13(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540900

RESUMO

Electrically conductive hydrogels (ECHs), an emerging class of biomaterials, have garnered tremendous attention due to their potential for a wide variety of biomedical applications, from tissue-engineered scaffolds to smart bioelectronics. Along with the development of new hydrogel systems, 3D printing of such ECHs is one of the most advanced approaches towards rapid fabrication of future biomedical implants and devices with versatile designs and tuneable functionalities. In this review, an overview of the state-of-the-art 3D printed ECHs comprising conductive polymers (polythiophene, polyaniline and polypyrrole) and/or conductive fillers (graphene, MXenes and liquid metals) is provided, with an insight into mechanisms of electrical conductivity and design considerations for tuneable physiochemical properties and biocompatibility. Recent advances in the formulation of 3D printable bioinks and their practical applications are discussed; current challenges and limitations of 3D printing of ECHs are identified; new 3D printing-based hybrid methods for selective deposition and fabrication of controlled nanostructures are highlighted; and finally, future directions are proposed.

5.
Materials (Basel) ; 12(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934549

RESUMO

Micro-supercapacitors have recently emerged as promising microscale power sources for portable and wearable microelectronics. However, most reported planar micro-supercapacitors suffer from low energy density and the complexity of fabrication, which calls for their further development. In recent years, the fortification of graphene has enabled the dramatic improvement of planar micro-supercapacitors by taking full advantage of in-plane interdigital architecture and the unique features of graphene. The development of viable printing technologies has also provided better means for manufacturing, bringing micro-supercapacitors closer to practical applications. This review summarizes the latest advances in graphene-based planar micro-supercapacitors, with specific emphasis placed on formulation of graphene-based inks and their fabrication routes onto interdigital electrodes. Prospects and challenges in this field are also discussed towards the realization of graphene-based planar micro-supercapacitors in the world of microelectronics.

6.
Adv Colloid Interface Sci ; 261: 41-61, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30318342

RESUMO

Graphene inks have recently enabled the dramatic improvement of printed flexible electronics due to their low cost, ease of processability, higher conductivity and flexibility. In this review, we discuss the state-of-the-art of the fundamental formulation of graphene inks and the current printing techniques used for inks deposition, followed by recent practical applications for printed flexible electronics. The progression of science and technology for the dispersion of graphene using variety of solvents and the characteristics of the resulting conductive inks have been highlighted, with specific emphasis focused on the challenges to be resolved. The printing techniques discussed here include screen printing, gravure printing, inkjet printing and other emerging printing technologies. Each approach's pros and cons are discussed in correlation with the ink formulations and the operating principles. We also discuss the challenges and outlook of graphene ink for its future development in the world of printed flexible devices.

7.
Langmuir ; 34(31): 9238-9251, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29989819

RESUMO

The development of protein-based hydrogels for tissue engineering applications is often limited by their mechanical properties. Herein, we present the facile fabrication of tough regenerated silk fibroin (RSF)/graphene oxide (GO) nanocomposite hydrogels by a photochemical cross-linking method. The RSF/GO composite hydrogels demonstrated soft and adhesive properties during initial stages of photocrosslinking (<2 min), which is not observed for the pristine RSF hydrogel, and rendered a tough and nonadhesive hydrogel upon complete cross-linking (10 min). The composite hydrogels exhibited superior tensile mechanical properties, increased ß-sheet content, and decreased chain mobility compared to that of the pristine RSF hydrogels. The composite hydrogels demonstrated Young's modulus as high as ∼8 MPa, which is significantly higher than native cartilage (∼1.5 MPa), and tensile toughness as high as ∼2.4 MJ/m3, which is greater than that of electroactive polymer muscles and at par with RSF/GO composite membranes fabricated by layer-by-layer assembly. Small-angle scattering study reveals the hierarchical structure of photocrosslinked RSF hydrogels to comprise randomly distributed water-poor (hydrophobic) and water-rich (hydrophilic) regions at the nanoscale, whereas water pores and channels exhibiting fractal-like characteristics at the microscale. The size of hydrophobic domain (containing ß-sheets) was observed to increase slightly with GO incorporation and/or alcohol post-treatment, whereas the size of the hydrophilic domain (intersheet distance containing random coils) was observed to increase significantly, which influences/affects water uptake capacity, cross-link density, and mechanical properties of hydrogels. The presented results have implications for both fundamental understanding of the structure-property relationship of RSF-based hydrogels and their technological applications.

8.
ACS Omega ; 2(6): 3036-3042, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457637

RESUMO

A reformable polymer gel material has been developed based on the disulfide cross-linking of low-molecular-weight polyethylenimine (PEI) that can be synthesized through a facile thiolation method and reprocessed through an aqueous method without the use of solvents or additional chemicals. Despite being made with water-soluble PEI, the cross-linked gel shows good mechanical integrity and its properties can be controlled through the fabrication parameters, maintaining the hydrophilic nature of PEI while being sufficiently robust to form a free-standing film that does not dissolve in water. The properties of the gel have been characterized by Fourier transform infrared spectroscopy, thermogravimetry, and dynamic mechanical analyses, showing the effect of parameters such as the degree of thiolation and thermal curing. The reformability of the gel comes from the disulfide cross-links, which can be disrupted and reformed through a simple, aqueous processing method utilizing ultrasonication, creating an aqueous dispersion, which can be recast multiple times with minimal loss in physical properties.

9.
ACS Omega ; 1(1): 29-40, 2016 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457116

RESUMO

In this contribution, we report the facile preparation of cross-linked polymerizable ionic liquid (PIL)-based nanoparticles via thiol-ene photopolymerization in a miniemulsion. The synthesized PIL nanoparticles with a diameter of about 200 nm were fully characterized with regard to their chemical structures, morphologies, and properties using different techniques, such as Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. To gain an in-depth understanding of the physical and morphological structures of the PIL nanoparticles in an emulsion, small-angle neutron scattering and ultra-small-angle neutron scattering were used. Neutron scattering studies revealed valuable information regarding the formation of cylindrical ionic micelles in the spherical nanoparticles, which is a unique property of this system. Furthermore, the PIL nanoparticle emulsion was utilized as an inhibitor in a self-assembled nanophase particle (SNAP) coating. The corrosion protection ability of the resultant coating was examined using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the PIL nanoparticle emulsion in the SNAP coating acts as an inhibitor of corrosion and is promising for fabricating advanced coatings with improved barrier function and corrosion protection.

10.
ACS Appl Mater Interfaces ; 7(31): 17298-306, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26171715

RESUMO

Multipurpose gel beads prepared from natural or synthetic polymers have received significant attention in various applications such as drug delivery, coatings, and electrolytes because of their versatility and unique performance as micro- and nanocontainers.1 However, comparatively little work has been done on poly(ionic liquid)-based materials despite their unique ionic characteristics. Thus, in this contribution we report the facile preparation of polymerizable ionic liquid-based gel beads using thiol-ene click chemistry. This novel system incorporates pentaerythritol tetra (3-mercaptopropionate) (PETKMP) and 1,4-di(vinylimidazolium) butane bisbromide in a thiol-ene-based photopolymerization to fabricate the gel beads. Their chemical structure, thermal and mechanical properties have been investigated using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). The gel beads possess low Tg and their ionic functionalities attribute self-healing properties and their ability to uptake small molecules or organic compounds offers their potential use as pH sensing material and macrocontainers.


Assuntos
Géis/química , Líquidos Iônicos/química , Polímeros/química , Compostos de Sulfidrila/química , Varredura Diferencial de Calorimetria , Química Click , Concentração de Íons de Hidrogênio , Cinética , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...